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The leading optical approximation to a slowly varying solitary crest on constant 
depth is the plane soliton solution with the local values of amplitude and orientation 
substituted. This leads to two nonlinear hyperbolic equations for the local amplitude 
and inclination of the crest that have been reported by several authors and predict 
the formation of progressive wave jumps, or shocks, from any initial perturbation 
of the crest. In comparison to numerical solutions of the Boussinesq equations we 
find that this optical approximation fails to reproduce essential properties of the crest 
dynamics, in particular that the crest modulations are damped and that well-defined 
wave jumps do not necessarily evolve. One purpose of the present work is to include 
such features in an amended optical approximation. 

We obtain the leading correction to the ‘local soliton’ solution by a multiple scale 
technique. In addition to a modification to the wave profile the perturbation expan- 
sion also yields a diffracted wave system and a celerity that depends on the curvature 
of the crest. The principle of energy conservation then leads us to a second-order op- 
tical approximation consisting of transport equations of mixed hyperbolic/parabolic 
nature. Under additional assumptions the transport equations can be reduced to the 
well-known Burgers equation. 

Numerical simulations of the Boussinesq equations are performed for modulations 
on otherwise straight crests and radially converging solitons. The improved optical, 
or ray, theory reproduces all essential features and agrees closely with the numerical 
solution in both cases. Contrary to purely hyperbolic optical descriptions the present 
theory also predicts wave jumps of finite width that are consistent with the triad 
solution of Miles (1977). 

The present work indicates that while sinusoidal waves often are appropriately de- 
scribed by the lowest-order physical optics, higher-order corrections must be expected 
to be important for single crested waves. 

1. Introduction 
Approximate theories for wave propagation in a slowly varying medium are most 

extensively developed and applied for linear, harmonic waves. However, there has 
also been some progress for particular species of nonlinear waves such as shock waves 
(Whitham 1974), Stokes-type waves (Peregrine 1985) and shallow-water solitons (Miles 
1980) which are the concern of the present work. 

Seismic activity, submarine slides, rock and snow avalanches into lakes etc. may 
generate devastating systems of huge waves. In coastal waters these may be headed 
by one or more crests of a form akin to solitary waves. Hence, insight into the 
dynamics of non-uniform solitary crests may be helpful for the understanding of 
tsunami propagation and impact on shore. The larger part of the reported work 
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on modulated solitons has been directed towards waves normally incident on a shelf 
or propagating in a narrow channel of gently varying width. However, there has 
also been some activity on genuine three-dimensional problems, generally through 
application of simple optical methods. Kulikovskii & Reutov (1976, 1980) studied 
solitons in variable depths and over underwater trenches and ridges. Reutov (1976) 
and Miles (1977~) discuss the behaviour of non-uniform solitary crests on constant 
depth. One of the major results is the existence of laterally moving disturbances that 
eventually develop shocks. Analogues shocks, or wave jumps, are known also for 
other nonlinear waves (Yue & Mei 1980; Peregrine 1983; Liu & Yoon 1986). For 
shallow-water solitons Miles (197717) gives a complete description of such jumps in 
the form of phase-locked triads, presented in the context of Mach reflection. Herein 
we will investigate the dynamics of a solitary crest both through general numerical 
solutions and a new optical theory. 

A direct derivation of an optical theory for solitons by application of the phase 
velocity -amplitude relation and the usual assumptions concerning energy transport 
is straightforward. Grimshaw (1970) developed transport equations by means of 
a formal multiple scale expansion on a set of two-dimensional Boussinesq-type 
equations. In 1971 he generalized the expansion to three dimensions, starting this time 
from the full inviscid description. Later KO & Kuehl (1979) applied a similar method 
for radially converging or diverging ion acoustic waves in two and three dimensions. 
In the present paper we investigate the dynamics of a soliton-like crest in constant 
depth, with the combined purpose of getting insight into the physics as well as the 
performance of the optical approaches. We find that the standard optical theory, as 
described by Miles (1977c), Reutov (1976) and others, displays severe shortcomings 
when compared to numerical solutions of the Boussinesq equations. This is the 
main motivation for the construction of the higher-order ray theory that is to be 
presented in $3. The corrected transport equations are found by combining a formal 
perturbation expansion and energy arguments. The expansion is intimately related 
to the one reported by Grimshaw, but is amended in several ways to obtain suitable 
representations of the higher-order terms. When the corresponding modified wave 
field replaces the ‘local soliton’ approximation in the energy balance considerations we 
then arrive at an improved energy transport equation. A higher-order kinetic equation. 
on the other hand, follows directly from the perturbation technique. Together these 
two transport equations form an optical approximation that possesses important new 
properties and reproduces full solutions closely in several examples. In the present 
context the term ‘full’ means that no assumption of slow variation has been invoked 
and we employ both numerical solutions of the Boussinesq equations and Miles’ 
(197717) analytical solution for a resonant triad of solitons. 

2. Basic equations 
Marking dimensional quantities by a star we introduce a coordinate system with 

horizontal axes ox*, oy* in the undisturbed water level and oz* pointing vertically 
upwards. Further we assume a flat bottom at Z* = -h* and apply h* and (gh*)f 
as characteristic length and speed respectively. We are then led to the following 
definition of non-dimensional variables : 

(2.1) 
t* = h*( h* -’ 

0 g 0) 2 t 7  x* r hgx, J>* = h* 
* *  

OY 9 

q* = h&, $* = h;(gh,*)i#J, z = h,z, 

where q is the surface elevation and 4 is the velocity potential. 
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In terms of q and the averaged potential 4 the Boussinesq equations can be written 

Y t  = -v. ((1 + Y m } ,  (2.2) 
- 

4t + y + i(V@ - +v’& = 0. 

A derivation of these equations can be found in Wu (1981). 
For the soliton solution we write 

Y = AY(X,A), 3 = B@(X,A), (2.4) 

where A is a measure of the amplitude and the linear phase function is defined as 
x = k(n  . Y - cot) in which n is the unit vector in the direction of wave advance. The 
exact soliton solution (of the fully inviscid equations) can be expressed through power 
series in A according to 

(2.5) 1 Y = Yo + $Yo’+ ... , = Yo - $4Yo” + ... , 
k = L(3A)’ 2(1+klA+ ...), 

B = c(A/k) ,  

C O =  1 + ; A + c 2 A 2 +  ..., 
E = (8/35)Ai(1 + $ A  + ...), 

where Yo(x) = sech2(X) and E is the integrated energy content of the soliton. The 
second-order terms for Y ,  @ and E are obtained from Laitone (1960) and Longuet- 
Higgins & Fenton (1974). Naturally, the soliton solution of the Boussinesq equations 
will agree with the above expressions for Y ,  @ and E only to the leading order in A. 
A brief summary as to when and by whom the different terms of the expansion (2.5) 
were first reported is found in Witting (1975). 

3. Transport equations for a slowly modulated crest 
We will be dealing with wave patterns consisting of a single, nearly soliton shaped, 

crest as primary wave field and a secondary, or residual, system of diffracted waves. 
Whenever possible the x-axis will be aligned parallel to the main direction of wave 
advance for the primary wave and the field variables evaluated at the crest peak will 
be marked by the superscript (m). 

3.1. The corrected wave field 
We assume that the variation rate of height and orientation of the principal crest 
can be quantified by the small parameter p, which leads to the introduction of slow 
variables (2,9,  2) = p(x, y ,  t) .  A perturbed soliton-like crest is written as 

where A is a function of the slow variables and the form functions Y and @ are 
as defined in (2.5). We note that the slow variables enter the expressions for Y 
and @ only implicitly through A. Grimshaw (1970, 1971), as well as KO & Kuehl 
(1978, 1979), introduced a multiplicative factor depending on slow variables, before 
the phase function (see Appendix A). The phase function X, which represents the fast 
variation, is no longer linear. Hence, the wavenumber, k, and phase speed, c, defined 
by 

k = V X ,  kc=-X t ,  k = lkl, (3.2) 
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are functions of the independent variables. Contrary to Grimshaw and KO & Kuehl 
we expand the phase speed and wavenumber (see Appendix A) according to 

c = co + P(cj"(2,9,  ?)x + c'P'(2, 9, ?)) + 0(P2), 
k = ko + p(S(l'(2, J,?)x + S'o'(%,j, 3) )s  + O(P2), 

(3.3) 
(3.4) 

where co and ko = lkol relate to A as described in (2.5). Defining n = cos 8i + sin 8 j  
as the unit vector parallel to ko we may further define S = i, x n. Leaving the details 
for Appendix A we arrive at the energy transport equation 

( A s h  + toe. (nAi )  = O(AS). (3.5) 

The equation is easily brought into standard conservative form, but this is really 
inadequate since it, by itself, expresses energy conservation in an integrated sense 
only. The phase speed corrections read 

(3.6) 

(3.7) 

c(ll) = ( 3 4 4 ( 4  + - ;us .) to(&, 
c(0) 1 = -(3A)-i& + O ( A f ) ,  

where the subscripts 5 and 2 denote differentiation in the s- and n-directions respec- 
tively. We note that the correction to the phase speed at the peak is proportional to 
the curvature of the principal crest. For the first-order wave field we may write 

6 = $ A ) - ~ I $ I P ~  + 2 c ~ ) ( x ~ o  + $ x 2 ~ o , x )  + o ( A ~ ) ,  

4 = k&p(X@o + iX2Yo) + O(A), 

(3.8) 

(3.9) 

where = JA Yodx = 1 - tanhx. From the above expression for $I and (3.1) we 
obtain a non-zero cross-ray velocity, defined as the component along s, that becomes 
important for the subsequent energy considerations (see discussion below (3.15)). For 
the position of the primary crest (x = 0) we may now write the kinematic equation 

f - - cos-1 fW(co + pcjo')'"'. (3.10) 

The equations (3.7) and (3.8) imply that a converging, or focusing, crest (0: < 0) 
has an increased propagation velocity and is followed by a surface elevation, whereas 
a diverging wave is retarded and followed by a trough. As a consequence, the 
modification cy' to the wave speed will tend to straighten a crest that inherits 
alternating focusing and defocusing regions. 

Behind the primary wave (x -+ -m) Y and IPX decay exponentially. whereas 
@o -+ -2. Consequently the downstream wave field does not vanish, but is defined 
through 

+, = -$(3~)-40~,  u-, = -p(3rl)-+(;esn+ 2 ~ ~ 4 ,  (3.11) 
where u-, is the particle velocity and relative errors of order A,P are implicit 
throughout. If (3.1) together with (3.8) and (3.9) define a uniform solution the above 
wave field has to fulfil the linear hydrostatic equations to the leading order in A and 
P. Assuming A;, = 0, say, we obtain anyway a local solution for the vicinity of drnf 
that can be matched to an outer wave field to give a complete solution. In some cases 
we are able to construct uniform solutions with ~(11) = 0 which correspond to very 
compact representations of the field variables. 

3.2. Integrated conservation laws 
Higher-order counterparts to (3.5) can in principle be found by going to higher orders 
in the perturbation scheme. However, the energy equation (3.5) can readily be recast 
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Y l  

FIGURE 1. Control volume for energy account. The volume corresponds to the shaded region, while 
the fat solid line represent the primary wave. 

into the energy equation employed by Miles (1977~) and others, that alternatively 
can be deduced by a direct energy balance argument applied to the primary wave 
field only. Correspondingly, similar arguments applied to the corrected wave field 
will result in a higher-order integrated energy equation. As compared to advancing 
the perturbation scheme this will constitute a simpler and altogether more illustrative 
approach. 

A control volume for energy balance is depicted in figure 1 where F is the total 
energy flux in the y-direction associated with the primary crest, p22, p2] (x) ,  p 2 ] ( Y )  the 
energy and energy-flux densities of the diffracted field and & denotes the integral 
of ](J'). Further, for the flux and density integrated across the stem we invoke the 
partition: F = 90 + pF1, B = Bo + PSI. The first-order parts are associated with 
products between the 0(1) and O(p)  field variables and variations of A, k and c across 
the crest. However, the latter contribution turns out to be zero. Letting yl - yo -+ 0 
we now obtain an integrated conservation law in ordered form: 

&or, + pa,,; = - 9 0 , j  - P%,j - P 9  + 0(P2), (3.12) 

(3.13) 

where 9 can be interpreted as the energy leak due to the diffracted wave field. 
The integrands in the expressions for €0 and 90 are symmetric in x and decay 

exponentially at the outskirts of the primary wave. In these integrals the effect of 
slow variations will thus cancel to O(P). Owing to these observations the integration 
is straightforward and we arrive at 

(3.14) 

where E(A) is the energy of a straight soliton of amplitude A integrated over a 
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cross-section normal the crest. For the vertically integrated flux density we find 

f = (fa + Pf1)n + 3-4PAiAs@oYos + #(p',pAs), (3.15) 

where fon  is the contribution from the primary wave. The last term corresponds 
to a cross-ray energy transport. Physically, this transport stems from the lateral 
pressure gradient that necessarily is present under a ridge of variable height and 
produces lateral accelerations which integrate to a lateral velocity component. The 
dominant part of the cross-ray energy flux then corresponds to the work exerted by 
the pressure against this velocity. These arguments are easily quantified to enable a 
direct calculation of the last term of (3.15) as well as the s-component of the total 
velocity, without application of the formal perturbation expansion. Unfortunately, 
the other O(8) terms cannot be obtained in a similar manner. Integrating the term 
fo sin O(") we obviously obtain cplbo tan 8("l owing to the consistency of the plane 
soliton solution. Through integration of the remaining terms in (3.15) we find a 
corresponding relation between g1 and the integral of f l  and arrive at 

F~ + 8 9 ,  = $)(go + pgl) sin P) - P : A ~ '  + 0(fi2, 8 ~ ~ ) .  (3.16) 

The term 
The surface elevation and velocity immediately behind the primary wave are found 

by putting x = x(") in (3.11). When these field quantities are substituted into (3.13) 
we find that the leading-order terms in A cancel out and we obtain 

sin 0(") does not show up because it is of higher order in A. 

(3.17) 

One might object that higher-order corrections to f i  and 4 may be important owing 
to the nihilation of leading contributions to 9. However, a careful examination of 
the calculation leading to (3.17) reveals that this is not the case. We further note that 
the quantity cos 8(")9, which is independent of the orientation of the coordinate axes, 
can be recognized as the energy leak density measured per length of the principal 
crest. 

Summarizing the above results we find the improved energy equation 

Using a similar analysis we have found that the preceding results are consistent 

f n-, - q-cu = -; - A  ("1 r - m ( l +  O(A)) ,  (3.19) 

with conservation of volume and momentum. In addition we obtain the relation 

that is valid for x = x(") and where q-, and n-, are defined as in (3.11). 

3.3. Gently modulated crests 

For small modulations on a straight crest we may assume @"') small. Using (3.10) and 
representing E and co to the leading order in A'") we obtain 
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from the energy equation (3.2). The second term on the right-hand side has a form 
akin to the diffusion term of the standard heat equation, whereas the last term 
represents an energy sink. Using the same terminology we may classify the first term 
on the right-hand side as an advection term, with t9(m) in the role of velocity. The 
corresponding kinematic equation is readily obtained from (3.10) : 

(3.21) 

Again the corrections of higher order in p give rise to a term reminiscent of diffusion 
in an otherwise hyperbolic equation. Naturally, the errors due to the omission of 
higher-order terms (in A )  in E and co will often be larger than the O(p)  terms in the 
above transport equations (3.20) and (3.21). However, it will still be appropriate to 
retain the latter terms since they introduce qualitatively new mathematical features. 
In fact, each term in (3.20) and (3.21) can be regarded as the leading representation 
of a particular physical effect. A tendency toward formation of wave jumps, due 
to the nonlinear ‘advective’ terms in the transport equations, is now opposed by 
the diffusion-like effect of cross-ray energy transport and the dependencies of energy 
density and propagation velocity upon the curvature of the primary crest. 

To leading order in p we may easily recast (3.20) and (3.21) into characteristic form 
according to 

which is equivalent with the description employed by, for instance, Miles (19774. 
Under the assumption that all disturbances move along the C+ characteristic, as 

defined above, the ray description (3.20) and (3.21) can be substantially simplified. 
We further assume that the absolute variation in A is of order p, which implies 
that the leading nonlinearities (in a as defined below) in the ‘advective’ terms of the 
ray equations are comparable to the ‘diffusion’ like terms. Consequently, we change 
variables according to 

~ ( m )  = A ~ ( I +  pa), e ( m )  = piy , ,  y = ~ ~ ( 9  - u;), (3.23) 

where U = (Ao/3)f is introduced according to (3.22). In this frame of reference we 
may assume that the time dependence can be represented by the second-order slow 
variable 

z = pUAoZ = P2UAot. (3.24) 
Inserting the new variables into (3.20) and (3.21) we obtain a Burgers’ equation for a :  

a, + (a2ly - :ayJ = o(/J). (3.25) 

We note that the leakage term has dropped out of the equation to the present order. 
Using the notations and assumptions inherent in (3.23) we may also find uniform 

solutions for q and $ defined by cy) = 0 and 

(3.26) 

that for arbitrary functions a* fulfil (3.20), (3.21), (A3) and (A4) to the leading 
order in p. Substituting these expressions into (3.8) and (3.9) we observe that the 
diffracted wave field is a solution of the linear hydrostatic equations and consists 

I A = AO( 1 + P(a+(C+) + a-(C-)) 1, e = $ ~ o ) t ~ ( a + ( i + )  - a-(c-)), 

i+ = Ao(9 f UZ) L U ( 2  - co(Ao)?), 



90 6. Pedersen 

of two families of plane waves. The two systems have phase lines aligned at angles 
+(3Ao)f relative to the primary crest and are linked to perturbations propagating 
along the C+ characteristics in (3.22) respectively. We note that the diffracted waves 
also are consistent with (3.19). The typical lengthscale of the diffracted waves is of 
order B-'. When higher-order terms are taken into account, as in (3.25), the shape of 
the diffracted wave will evolve at a rate of order p 2 .  Thus, the diffracted wave field 
may be regarded as a slowly varying solution of the linear hydrostatic equations. 

3.4. Radially converging waves 

The axisymmetric case cannot inherit the diffusion-like features of the nearly straight 
crests discussed in the previous subsection. However, both the energy density and the 
wave celerity do still depend on the gradient of B and the energy leak due to diffracted 
waves will also remain. The energy transport equation may now be formulated simply 
as a balance between energy loss in the principal wave and energy accumulated in the 
trailing wave system that is continuously prolongated. Integration in time then yields 

8 dm) 
27 ro 

r(m)E(A(m)) = roE(A0) + -In -, (3.27) 

where r is the distance from the point of symmetry and dnZ) = ro, A(M) = A0 define 
a reference state. To leading order in A the contribution to the total energy from 
bl is constant and therefore drops out of the above equation. The equation (3.27) 
is described exclusively in terms of fast variables with dm) itself as the ordering 
parameter. This reflects that the underlying perturbation expansion is asymptotically 
valid for large Y. As the wave approaches the point of symmetry the right-hand side 
of (3.27) is bound to change sign for some drn) and the equation loose sense. However, 
the whole asymptotic solution will become invalid long before this point is reached. 

KO & Kuehl (1979) reported an amplitude evolution that is consistent with having 
the logarithmic term of (3.27) multiplied by dm). This leads to meaningless results 
and is certainly due to a misprint. 

As opposed to the case of gently perturbed crests, the curvature dependence in 
the energy density introduces no principally new features in the final energy equation 
(3.27). This would probably still be the case even if 81 was calculated to the next 
order in A. We are then left with the energy loss to the diffracted tail as the genuine 
first-order effect in fl. This effect is generally very small and may be important only 
when accumulated over an extremely large propagation distance (see figure 9). We 
note that for small A the equation (3.27) applies equally well when A is replaced by 
the total wave height, qmax = max(AY + 84). The explanation is simply that to the 
appropriate order we have T ( ~ ) ( A ( ~ ) ) ;  - drn)(qmaX)$ = const. 

Concerning the wave profile for radially symmetric waves we employ two represen- 
tations of A. Setting A = A(") we obtain a local solution that yields a non-zero ~(11) and 
a form of (3.8) akin to the solution of KO & Kuehl. Apart from two extra terms the 
corresponding expression of KO & Kuehl can now be rewritten as (3.8). In addition to 
the term D ~ Y o , ~  (see Appendix A) the solution of KO & Kuehl also contains a term of 
type (A6) corresponding to a redefinition of the amplitude: A1 = -4/(3r(m)(3A(m))i). 
When this amplitude modification is taken into account we find that the results of 
KO & Kuehl also become consistent with cy' as given in (3.7). 

Alternatively, the expression 

2(i + 3 + 30) 
A =  

3i 
(3.28) 
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solves the transport equations to the appropriate order giving cy) = 0 and correct 
behaviour of the trailing wave. A singularity ahead of the principal crest and the 
large values of A attained as i -+ 00 are of minor importance. 

4. Examples 
We will study the evolution of inhomogeneous solitary crests for three particular 

cases. Each case is analysed by the present optical theory as well as another method 
that involves no assumption of slow variation. In addition to the description of the 
primary crest, represented by @") and A(m), we will pay attention to the diffracted 
wave fields as well as the energy flux distributions. 

First we study a progressive perturbation corresponding to a self-similar solution 
of the Burgers equation (3.25) that describes the evolution of the junction between 
two dislocated, but otherwise identical, semi-infinite crests. This solution is compared 
to numerical solutions of the Boussinesq equations and the set (3.20) and (3.21). 

The second example is a wave jump of permanent form for which we compare 
results from the ray description to the general solution for a triad of solitons reported 
by Miles (1977b). 

Finally we investigate a crest with radial symmetry. Mathematically this is a one- 
dimensional problem for which we may compute very accurate numerical solutions 
of the Boussinesq equations, permitting discussion of quantities like cy). Since the 
ray theory in this case can be regarded as an asymptotic approximation for large 
r ,  in-going waves provide well-suited test examples for which the basic assumptions 
become gradually strained as r(m) diminishes with time. 

4.1. A selfsimilar perturbation - comparison to the Boussinesq solution 
The numerical procedure for solution of the Boussinesq equations differs from the one 
applied in Pedersen (1988) only with regard to minor, technical details. Consequently, 
we omit the description of the method. The ability of the method to represent solitary 
waves was studied by Pedersen (1991), who demonstrated the existence of discrete 
solitary waves expressible as single-crested permanent-form solutions of the difference 
equations. This is important in the present context where both length and time scales 
for the development of wave patterns may be very large and even a slight spurious 
damping or disintegration may corrupt the results. For completeness we sketch the 
numerical solution of (3.20) and (3.21) in Appendix B. To enable comparison with ray 
theory some secondary unknowns have to be calculated from the discrete Boussinesq 
solution. Energy fluxes are found by numerical integration of discrete counterparts 
of the expression 

(4.1) 
The quantities Acm) and are determined by the extremes of interpolating splines 
defined along grid rows parallel to the x-axis, thereby introducing a series of new 
approximations. However, in the present subsection the effects of these are negligible. 
The angle of orientation, O(m), is found by a polynomial (usually cubic) least-square 
fit to the interpolated extremes. Since the position of a maximum is sensitive to errors 
this procedure may sometimes produce visible artificial fluctuations, but generally not 
to an extent that affects the interpretation of the results. 

We will add a few further comments on the wave patterns predicted by the 
Boussinesq equations. As stated in Appendix A the Boussinesq equations reproduce 
9, 3 and c1 correctly to the leading order in A. Also the leading balance of (3.2), 

f = -&( 1 + q)V& 1 + 0(A2) ) .  
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FIGURE 2. Time evolution of the initial condition (4.2), t = 0, with parameters A0 = 0.1, dmax = 0.15 
and L = 66.7. The selected times are t = 0,400,800, ..., 2000. The dashed lines correspond to the 
solution of the characteristic equations (3.22), whereas the numerical solution of the Boussinesq 
equations is depicted with solid lines. 

that may be derived directly from ( 3 4 ,  is inherent in this description. However, 
since the Boussinesq equations are not exactly energy conserving the corrected energy 
equation (3.20) cannot automatically be anticipated to apply to their solutions. Still, 
we would expect improved agreement from the higher-order transport equations as 
we indeed will observe. The initial conditions are derived from an initial distribution 
of A(") and U(") by substituting a phase function xin(x, y) = k(") cos O(")(x - x@)) into 
the exact soliton solution for the actual Boussinesq equations. This solution is given 
in Pedersen (1988). Consequently, neither the full spatial variation of A and 0 nor 
the O(p)  wave field are present in the initial state, but evolve over time. The fact 
that the secondary wave field is spontaneously induced over time increase its value as 
evidence for the ray theory. 

The Burgers equation can be transformed to the linear heat equation by means 
of the Cole-Hopf transformation. Both the equation itself, the transformation and 
a selection of analytical solutions are discussed in detail by Whitham (1974). Here 
we will employ a self-similar solution that can be expressed in the variables y and t 
according to 

A'") - A0 - Amax(t / to  + 1 j-t exp(a~,, - 0'1 ~ _ _ _  - ' 1  (4.2) 
A0 1 + ;AoL(1n 2)-f A,, exp(o&,,) (erf(cr,,,) - erf(o)) 

(In 2); (y - ~ t )  3( 3Ao) 5 L2 3AoL 
9 omax = ___ 81n2 4(ln2)f ' cT= ' t o  = 

L(t/to + 1); 

where U is as defined below (3.23) and erf denotes the error function. The solution 
contains two free parameters: A,,, which is the maximum initial relative perturbation 
of the amplitude, attained at cr = omax, and L which is a measure of the initial lateral 
extension of the perturbation. 

In figure 2 we have depicted the solutions of the characteristic equations (3.22) and 
the Boussinesq equations for initial conditions corresponding to (4.2) with A0 = 0.1, 
Amax = 0.15 and L = 66.7. Although there is good agreement for the propagation 
speed of the disturbance, the different qualitative behaviour of the two solutions is 
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FIGURE 3. Solutions for the same initial conditions and selected times as in figure 2. The numerical 
solution of the Boussinesq equations is depicted with solid lines, the dashed lines correspond to 
the Burgers equation (3.25), the dotted line represent the solution of the transport equations (3.20) 
(3.21) with the leak term intact. 

striking. The solution of the simple ray equations steepens and becomes rapidly 
double-valued even though the initial perturbation is very gentle, whereas the Boussi- 
nesq solution instead displays a substantial damping and spreading in line with the 
time evolution of the self-similar solution (4.2). As shown in figure 3 there is also 
close quantitative agreement among the solution of the Burgers equation, (4.2), the 
solution of the Boussinesq equations and the numerical solution of the set (3.20) and 
(3.21) with the leak term intact. Omitting the last term in (3.20) we observe only 
very small changes in the solution, 6 being altered typically 0.01'. As compared to 
the higher-order ray solutions the Boussinesq equations yield to high perturbation 
amplitudes and to small angles. However, the difference evolves mainly during the 
first part of the simulation, whereas the succeeding trends are quite similar. Thus, the 
deviations probably stem mainly from the different relations between A and 6 that are 
inherent in the different descriptions of the unidirectional progressive modulations. 

In figure 4(a) we have depicted the y-component of the integrated energy flux 

4 FLM 267 
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FIGURE 4. Integrated energy fluxes for the case displayed in figure 3 after t = 2000. (a )  The 
y-component of the flux associated with the leading crest. ( b )  The cross-ray component for the 
primary crest. Fluxes from the Boussinesq solution are represented by solid lines. The dashed lines 
correspond to fluxes obtained by substituting the interpolated amplitudes and orientations from 
this solution into the terms on the right-hand side of (3.16), using the leading approximation for E .  

associated with the primary crest, which is the quantity denoted by 5 in $3.2. The 
integration of the numerical solution is performed over the interval (x - X ( ~ ) J  < D 
where D is defined according to Y&p’Dj = There is close agreement between 
(3.16), with the leading representation of E substituted, and the integrated flux from 
the Boussinesq solution. The cross-ray energy flux component, #’), defined as normal 
to dm)(y , t j  and still integrated within the width of the primary wave, is displayed in 
figure 4(b) together with the last term of (3.16). Again we find convincing agreement, 
particularly in view of the two levels of interpolation that are involved. 

Concerning the higher-order (in p )  contributions to the wave field it is very difficult 
to extract the form correction of the primary wave from the Boussinesq solution 
owing to its small magnitude compared with discretization and interpolation errors. 
The cross-ray velocity component, dS), is on the other hand of order throughout the 
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FIGURE 5. Cross-ray velocities for the case displayed in figure 3 after r = 2000. ( a )  Contour plot of 
di) obtained from (4.3) and results of 93.3; ( h )  interpolated u(') from the Boussinesq solution. The 
contour increment is 0.5 x the relative stretch of the x-scale is 10, the fat solid line shows to the 
position of the peak and the vertical lines at x = 65 correspond to the cross-sections depicted in (c). 
The visible difference in orientation is of order tanBd - ed. (c) The velocity u, at the cross-section 
x = 65. The solid and dashed lines represent the Boussinesq solution and (4.3) respectively. 

wave field and can thus be computed also within the primary wave. The definition of 
cross-ray is still as given above. Employing the solution (3.26) for A and 8 we obtain 
c;') = 0 and (3.1) yields 

dS) = (B,@o + Bk(8 - e (m ' )Y , ) ( l  + O(B, 82,A")).  (4.3) 
4-2 
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FIGURE 6. The development of a short non-uniform region, defined according to A" = 0.1, dmax = 1 
and L = 8. ( a )  Contour plot of q obtained by numerical integration of the Boussinesq equations, 
with 0.025 as contour increment and equally scaled axes. ( h )  Amplitudes calculated by the various 
equations for t = 0,50,100. The interpretation of the curve types is as in figure 3 and the 
discrepancies at t = 0 are due to interpolation errors. 

We evaluate this expression by extracting A('") and 13@) from the Boussinesq solution 
and apply the continuation defined through (3.26), (3.8), (3.1) to obtain the complete 
wave field. As shown in figure 5 the result of this procedure agrees excellently with 
values directly interpolated from the Boussinesq solution. For the orientation of the 
diffracted wave field we find 6d = 30". The deviation from the result %n = (3Ao): = 

31.4" of $3.3 is of the same order as in approximations like shed w Od that are used 
frequently throughout the actual calculations. 

We will end this subsection by studying the behaviour of a rather abrupt change 
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FIGURE 7. A phase-locked triad. The triple point (shock) moves downward and the dashed line 
depicts the weakest member of the triad. The pattern is oriented like a Mach reflection pattern to 
make the letters i, r and w denote the incident, stem and reflected waves respectively. 

in dm) corresponding to A. = 0.1, L = 8 and A,,, = 1. This case must be expected to 
fall beyond the limits of the ray theory, at least for small t. Still, as shown in figure 
6, we observe the same qualitative behaviour as in the previous case with a dominant 
extension of the transition zone over time. Even the quantitative agreement between 
the transport equations and the Boussinesq equations is quite good. The diffusion-like 
spreading is much stronger than for more gentle modulations which suggest that such 
effects may be more important outside the slowly varying regime than within. This 
time the diffraction term has a marked influence upon the solution of (3.20) and 
(3.21) (10% in a), but the picture is by no means dominated by diffraction effects. 

4.2. Wave jumps - comparison to Miles’ solution 
According to (3.22) shocks, in the sense of discontinuities of the wave characteristics, 
will evolve from any initial perturbation of a crest. These are crude representations 
of wave jumps that often can be initiated by a non-uniform geometry. A familiar 
example is a vertical wall with a concave corner at which a Mach reflection pattern 
may start to evolve. Kulikovskii & Reutov (1980) and Liu & Yoon (1986) report 
wave jumps generated at trenches for solitary and Stokes’ waves respectively. The 
diffusion-like terms of (3.21), (3.20) or (3.25) must be expected to inhibit development 
of discontinuities and instead enable a more detailed description of jumps of finite 
width. 

A complete discussion of a jump, in the sense of an relative abrupt change in 
amplitude and orientation of the carrier wave, is found in Miles (19776) which is the 
second paper of a pair (Miles 1977a,b) presenting an excellent analysis of obliquely 
interacting solitons. In that context the shock is described as a phase-locked triad for 
which analytical solutions are presented. These solutions are accurate to the same 
order as the Boussinesq equations. A definition sketch of such a triad is shown in 
figure 7. The pattern is completely determined by the amplitude at one side of the 
shock and the jump in orientation, corresponding to &. Using the conventions implicit 
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in the figure, we may write the asymptotic relations of Miles' 

8,. = (3Ai)$, A, = Ai(1 + 
A - '82 r - 3 j 9 

I 

urn = (;A,) ' (1 - @i/'%), 

solution as 

(4.4) 

where V,, is the speed of the triple point, Ai and A, are the amplitudes ahead and 
behind of the jump respectively, while A, and 8, define the characteristics of the third 
wave. In the present context this wave may be regarded as a diffraction from the 
jump zone that is not inherent in the lowest-order (pure hyperbolic) ray theory. After 
being rescaled according to (2.1) the surface elevation from Miles' solution reads 

where the phases are given according to 

and the values of xf and y f  determine the location of the triple point. It is easily 

deduced that the shock width is proportional to Or1. Thus, provided A,'Oi << 1 the 
Burger equation (3.25) should reproduce the above jump relations to leading order. 
First we note that the angle 8, from (4.4) is identical to the general angle of diffracted 
wave systems that was found in 53.3. Next, finding a permanent-form jump solution 
of (3.25) and re-inserting the scaling (2.1) we obtain 

1 

A = A i  ( l+- Oi (1 + tanh ( @ O i  2 ( y  + U, t ) ) ) )  , (4.7) 
(3Ai)i 

where the shock speed U,  is as given in (4.4). However, the shock speed depends 
solely on the asymptotic characteristics of the jump (A, ,  A, and 8,) and is not affected 
by the diffusion-like terms of the corrected ray theory. The jump profile, on the 
other hand, is crucially dependent on these terms and does coincide with Miles' 
solution in the limit A,'B, + 0, A ,  + 0. This is most easily demonstrated through 
calculation of the diffracted wave (3.11), (3.26) that to leading order becomes a soliton 
with amplitude equal to A, as given in (4.4). The asymptotic agreement with Miles' 
solution clearly demonstrates the validity of the present theory. 

In figure 8 we have displayed A("' for two jumps, corresponding to A ,  = 0.05, 
8, = 0.5" and A, = 0.02, 8, = 7" respectively. Whereas the first case yields a very large 
jump width, the validity of the ray description is more questionable for the latter. 
However, even for the second case we obtain rather good results from the transport 
equations (3.20) and (3.21). 

4.3. Axisymmetric converging waves 
Propagation and evolution of axisymmetric waves in the weakly nonlinear and disper- 
sive regime have been the subjects of several papers, for example Cumberbach (1978) 
and Miles (1977d). KO & Kuehl (1979) reported a perturbation technique closely 
related to the present one. They found good agreement between their analytical 
results and numerical simulations concerning the amplification of focusing cylindrical 
and spherical waves. However, no detailed comparison for the wave profiles was 
presented. 
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FIGURE 8. The variation of the amplitude, A(m), across wave jumps. (a) Ai = 0.05 and 0, = OS", 
( b )  Ai = 0.02 and Oi = 7". The jump solution of Miles is depicted with solid lines, the dashed 
lines correspond to the Burgers equation (3.25) and the dotted lines represent the solution of the 
transport equations (3.20) (3.21) with the leak term intact. We have chosen the position where 
Miles' solution predicts A(") = ;(Ai + A,) as origin. 

The main objective of the present study of focusing waves is to seek direct ver- 
ification of the representations of f i  and cr) in $3 through comparison to accurate 
numerical solutions of the Boussinesq equations. The variable coefficients of the cylin- 
drical Boussinesq equations introduce no difficulties concerning numerical solution, 
apart from the extra caution required to resolve the neighbourhood of r = 0. We 
apply a straightforward adaptation of the method in Pedersen (1988) and any further 
description should be superfluous. For each numerical calculation the discretization 
errors are estimated by grid refinement tests. Values for the height, qmax, and position, 
rmax, of the crest peak are generally improved through a simple extrapolation rou- 
tine that utilizes the second-order (in grid increments) convergence of the numerical 
method. 

To the significant order (3.8) gives the following relation between rmax, qmax and 
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FIGURE 9. Height of the primary wave, H = A(")Y (0, A(m)) versus r(m) for different approximations 
to (3.27) as explained in the text: ---, (i); - - - - , (ii); . . . . ., (iii). 
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FIGURE 10. Amplitude, A@)(drn)), for a radially converging wave with initial conditions corresponding 
to a plane soliton solution with parameters TO = 4000, Ho = 0.0198. We have depicted the 
numerically calculated amplitude (-), the amplitude from (3.27) without the leak term (- - - -) 
and the amplitude predicted by the complete equation (3.27) (. . .). The energy equation (3.27) is 
applied with the modified reference point TO = 2999.8, A. = 0.0239 to avoid the effect of inaccurate 
initial conditions. 

where the height of the primary wave is given as H = A('")Y (O,A@)). When qmax and 
rmax are found from the numerical solution the above equations can be inverted to 
yield A(*) and d"), whereafter the whole perturbation solution can be calculated at 
the given instant. In the comparisons that are to follow we use exact representations, 
belonging to the Boussinesq equations, for Y and co as functions of H .  

The significance of the diffraction is illustrated in figure 9 where we have depicted 
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FIGURE 11. The surface elevation at t = 3400 for a radially converging wave with initial conditions 
corresponding to a plane soliton solution with parameters ro = 4000, A0 = 0.0198. We have depicted 
the numerically calculated surface elevation (-), the unified perturbation solution (- - - -) defined 
by (3.28), the soliton profile (- - -) and the local perturbation solution (. . . .) defined by A = A(m). 
The last three curves are based on the location and size of the maximum surface elevation in the 
numerical Boussinesq solution. 

results from (3.27). Wave heights of the primary crest are displayed for three different 
levels of approximation : 

(i) We retain the diffraction term, approximate E by 8 x 3-;(A(")); and put 
H = A(m), corresponding to the approximation Y fi: Yo. 

(ii) As (i), except that the logarithmic diffraction term is omitted. 
(iii) The diffraction term is retained and we have invoked the second-order repre- 

sentations for E and Y as given in (2.5). 
In the figure we have depicted the H(r("))  curves for the reference position ro = 1000 

and the reference wave heights HO = 0.1,0.05,0.03,0.015. It is apparent that the energy 
leak dominates higher-order contributions to E and Y only for the case corresponding 
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FIGURE 12. Errors for zeroth- and first-order approximation, in terms of p ,  to dm) as given in (4.9). 
The flossy appearance of the curves is probably due to interpolation errors. 

to the smallest reference wave height. Regarding comparison to numerical solutions 
of the Boussinesq equations we may thus expect improved agreement due to the 
diffraction term in (3.27) only for the domain in the (H,r@))-plane close to or below 
the lowest curve in the figure. We also see that the leading representation of E yields 
good results for A < 0.25, say. 

In figure 10 we have compared the amplification in a numerical simulation to the 
predictions of (3.27) corresponding to (i) and (ii) above. The numerical integration 
was initiated with Ho = 0.0198, rmax = 4000 and initial conditions corresponding to 
the exact plane soliton solution of the Boussinesq equations. However, the comparison 
is started when rmax < 3000 and the wave pattern presumably has been nearly fully 
developed. The agreement is as least as good as can be expected in view of the 
results in figure 9. According to the same figure we should not over-emphasize the 
improved agreement due to the leak term for this case. Wave profiles for t = 3400 
are compared in figure 11. We observe that the contribution from 9 is significant 
and that the profile belonging to (3.28) agrees well with the numerical solution for 
the crest as well as the diffracted tail. The most pronounced deviations are found 
at the head of the tail where the numerical solution displays some weak undulating 
behaviour. This feature resemble the tail generated when a plane soliton evolves from 
a slightly perturbed initial condition and is significantly altered neither by invoking 
the full perturbation solution as initial conditions, starting the soliton from a larger 
r,, nor by refining the grid. We are thus led to suggest that undulations reflect the 
‘struggle’ of the primary wave to preserve its identity and solitary shape. It is not 
investigated to what extent these effects may be included through higher-order terms 
of the perturbation expansion. Assuming a spatially constant A we find equally good 
agreement for the leading crest as for (3.28), but the tail is not reproduced. 

Whereas the factor cy’ was essential for the appropriate description of wave jumps 
in the preceding section, it is of minor importance in the context of axisymmetric 
waves. On the other hand, numerical solutions for radially converging waves provide 
an excellent opportunity for direct validation of the expression (3.7). Given H ( t )  and 
dM)( t ) ,  as extracted from the numerical solution, we may calculate the inherent errors 
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FIGURE 13. The total wave height qman for a radially converging wave with initial conditions 
corresponding to a plane soliton solution with parameters ro = 6000, qmai = 0.005. We have 
depicted the amplitude calculated numerically (-), the amplitude from (3.27) without the leak 
term (- - - -) and the amplitude predicted by the complete equation (3.27) (. . ..). The energy 
equation (3.27) is applied with the modified reference point ro = 2999.0, q,,, = 0.00723 to reduce 
the effect of inaccurate initial conditions. 

in two anticipated positions according to 
t 

where co is the exact soliton speed belonging to the Boussinesq equations and the 
second integrand is recognized as cy) for the radially symmetric case. For the same 
case as above we have displayed the two dislocations in figure 12. It is apparent that 
the retention of cy) reduces the error by an order of magnitude. 

Finally, in figure 13, we have depicted the amplification of a wave with initial 
parameters ro = 6000, qmax = 0.005 that roughly correspond to the lowest curve in 
figure 9. We observe that the presence of the leak term improves the agreement with 
the numerical solution markedly. However, it must be noted that the displayed case 
probably is at the limit on the validity range of the perturbation solution. 

5. Concluding remarks 
Numerical solutions of the Boussinesq equations confirm the existence of progres- 

sive modulations on a solitary-wave-like crest as predicted by standard ray theory. 
However, the full Boussinesq solutions inherit a pronounced damping of the modu- 
lation - a feature that cannot be reproduced by the purely hyperbolic ray equations 
reported previously. Corrections to the primary wave field are obtained by a two- 
scale perturbation technique that also yields a formal derivation of the first-order 
ray equations. In two special cases, infinitesimal modulations on a straight crest 
and axisymmetric focusing, we find uniform solutions of very compact form for the 
secondary wave field. However, an explicit calculation of the diffracted field is not 
required for the development of a corrected ray theory. Incorporating the secondary 
wave field in an energy balance argument for the head wave we obtain a second-order 
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transport equation that possess principally new features. One is the cross-ray energy 
transport due to lateral velocities. Equally important is the dependence of both inte- 
grated energy density and overall wave celerity speed on the curvature of the primary 
crest. An energy sink, due to the diffracted waves, does also appear, but proves to be 
less important for the presented examples. 

The new terms of the amended ray theory turn the transport equations into a mixed 
hyperbolic/parabolic form. Consequently the progressive modulations are damped 
and we observe excellent agreement with the Boussinesq equations. Also the integrated 
energy fluxes, cross-ray velocity components and diffracted wave field approximate 
closely the corresponding quantities of the full solution. Very strong diffusion-like 
damping and spreading are recognized in the numerical simulation of initially short 
modulations on the principal crest. Even in this case we obtain quantitatively good 
results from our higher-order ray theory. 

The application of ray theory to fully developed wave jumps is primarily limited to 
weak shocks and small amplitudes. For such shocks the amended transport equations 
predict a finite width and, together with the detailed perturbation solution, also a 
diffracted wave originating from the jump zone. In the limit of weak shocks this 
description is found to be perfectly consistent with Miles’ solution for a resonant triad 
of solitons, with the diffracted wave as the third member. The proper reproduction 
of weak wave jumps is a convincing proof of the validity of the presented theory. 
Again we obtain quantitatively good predictions from the ray theory for short crest 
transition also, this time in the form of a strong jump. 

For axisymmetric waves our perturbation solution, although developed in a different 
form and organization, can be shown to be fully consistent with the results of KO 
& Kuehl (1979). The new terms in the transport equations are much less important 
for radially converging waves. Naturally, there is no cross-ray energy transport in 
this case. In addition, the leading contribution from the curvature-dependent part 
of the energy density integrates to a constant in the final energy equation. However, 
we obtain very good agreement with accurate numerical simulations concerning both 
the detailed wave profiles and the curvature-dependent correction to the propagation 
speed, thereby establishing further confirmation of the perturbation solution. 

We conclude that higher-order effects in ray theory may often be important for 
the qualitative behaviour of modulated solitary waves. A similar importance of the 
diffusion-like effects must be expected also for other single-crested ‘hump shaped’ 
waves. Waves of essentially sinusoidal shape are, on the other hand, probably much 
less influenced since the cross-ray energy transport etc. is likely to cancel over an 
period. 

Appendix A. The perturbation expansion 

tency relations 
The local wavenumber and phase speed, defined by (3.2), have to fulfil the consis- 

k, + V ( k )  = 0, V x k = 0. (A 1) 
Owing to nonlinear interaction between the primary and secondary wave field we 

expand c and k according to 

c = co + PCI, k = ko + pkl,  (A 2) 

where CO, k~ relate to A as described in (2.5) and cl ,  kl are functions of x and the slow 
variables. Using the definitions below (3.4) we decompose the wavenumber correction 
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according to kl = N n  + Ss. Exploiting (A 1) we find that N drops out to order /? 
whereas c1 and S are at most linear functions of x as indicated in (3.3) and (3.4). Since 
both co and ~(11) inherit only slow variation the term Pcl may become comparable with 
co for large x, thereby violating the uniformity of the expansion (A2). This indicates 
that only local validity of the perturbation solution can be anticipated when c r )  is 
non-zero. On the other hand, the fast variation associated with x must be expected to 
vanish exponentially when 1x1 + 00. It turns out that we generally obtain a solution 
that is local in the slow variables, but still correct for large x. We are now led to the 
kinematic relations 

The factor cf = d(koco)/dko = 1 + $4 + O(A2)  bears a formal resemblance to the 
group velocity for sinusoidal waves and occurs in a similar fashion as far as the 
kinematic equations are concerned. It will be shown below that these two equations 
must be supplemented by a third equation, (3.5), that emerges from the solubility 
condition for 9 and 4. If cil) and S(l) were not included in the calculation, we 
would then have a set of three equations for the two unknowns A and 8, for which 
the existence of a solution is far from obvious beforehand. The retention of c r )  
and S(l) does also reconcile the present approach to those reported previously. The 
calculations of Grimshaw (1970, 1971) and KO & Kuehl (1978, 1979) were based on 
a phase function that is slightly different from the one used herein. Denoting their 
phase function by 2 we may write x = p(Ei-,j, ?)2. Defining the corresponding phase 
velocity by i2 = we then deduce 

which is clearly consistent with (3.3). 
At the peak of the primary wave only cy’ will contribute to the wave celerity. As 

an alternative to the introduction of cy’ we could have allowed A to be redefined 
to each order in P. To avoid ambiguity we must exclude such modifications that, 
according to (2.5), will appear as 

9 =. . .+A1(~ ,9 ,2 ) (Yo+~xYo,* )+  ... , 

where PA1 is the first-order amplitude correction. We are also left with some freedom 
concerning the spatial variation in A in relation to the factors ~(11) and Sf). Apart 
from plane and axisymmetric cases a lateral (along primary crest) variation in A must 
be fully included. The normal variation, however, is less essential and may, in analogy 
with (A 6) ,  be replaced by a contribution to the secondary wave field of the form 

Aim) 9 = ... + $&Yo + $x2Yo,x) + ... . (A 7) 

Contrary to that in (A6) this term will have no implications for the derivation of the 
higher-order transport equations in $3.2 because it is odd in x. 

Generally we must expect that a residual system of diffracted waves is trailing the 
leading crest. Thus, we may impose that f i  and 4 vanish asymptotically upstream 
(x ---f a), while allowing an infinite extension downstream for the first-order wave 
field. Inserting (3.1), (3.2) and (A2) into (2.2) and (2.3) and integrating the continuity 
equation with respect to x we find that the leading balance is automatically fulfilled 
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through the definition of the soliton solution, while to first order in /3 we obtain 

-9 + coko& = -(c?' + ~ i ' ) ~ ) k o B @ ,  + B;@ + S2, (A 9) 

where &,S2 = O(A2).  The set (A8) and (A9) can be ruled by two alternative 
dominant balances, corresponding to different representations of the secondary wave 
field. In any case it turns out that 

ij = O(Af), 09 = O(A), c(p),c(1') = O(Af). (A 10) 

We may summarize the two choices as follows: 

A solution for f i  and 4 is now possible only if 
(i) -0 + ko$, = O(Af).  

A ; ,  Ai, = O(A) ;  T B; + kO1(A; + 2?B . ko + B? . ko) = O(Af ). (A 11) 

To leading order (A 3) now implies A; + Ah = O(A2)  which is consistent with (A 11). 
In this case all O(A4)  terms in S1, S2 become significant. Consequently, the higher- 
order terms in (2.5) will enter the calculations. However, a careful consideration 
involving higher-order long-wave equations shows that the perturbation still can be 
appropriately performed starting from (2.2) and (2.3). 

As compared to the preceding option the variation of A becomes one order higher 
in A, according to A ; ,  Ah = O(A2).  Consequently, the variation of A and ko cannot 
contain the O(p)  modifications of the wave profile and a term like (A7) is bound to 
appear. The solution for f i  and 3 is again determined through the O ( A i )  balance of 
(A 8) and (A 9). However, this time we may retain only the terms in S1 and S2 that 
contain f i  or 3. 
Only the balance (i) enables compact and uniform solutions, while (ii) yields much 
simpler calculations. The 
alternative choice would involve the same main steps and lead to equivalent final 
equations (3.5)-(3.9). Some of the terms that are retained in these equation would, 
however, become insignificant. 

Eliminating 6 we find a linear second-order equation for f i  that is readily solved: 

(ii) -6 + ko& = O(AS). 

For the derivations below we assume behaviour (i). 

where @O is as defined below (3.9), D1 and 02 are constants of integration and 
G N expIxI, R - exp21x1 as 1x1 -+ co. Hence, D2 as well as the coefficient before 
R in (A12) have to be zero, which imply (3.5). According to the discussion below 
(A2) we must also discard the term on the second line of (A 12), thereby assigning a 
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value to cy'. Generally, any terms involving powers of x, instead of neatly behaved 
combinations of exponentials, look suspicious and should preferably be reinterpreted 
or removed by an improved construction of the perturbation scheme. Also the last 
term of (A12) contains potential factors of x. However, this term, which is of the 
form given in (A 7), can be removed only by finding solutions for A and 0 giving zero 
~(11). Now, the term D1 YO,% is easily seen to correspond to a non-uniform representation 
of a redefined phase function given by x -+ x + pol. This redefinition will not alter 
the profile of the principal crest to order p and corresponds to O(p2)  modifications 
in k and c that preferably should enter the solution through higher-order corrections 
to the transport equations. The fact that KO & Kuehl find a distinct value for D1 
from a higher-order solubility condition is probably due to the absence of expansions, 
like (A2), for c and k in their perturbation scheme. Clearly, in a consistent and 
compact expansion we can put D1 to zero. In addition we may note that this term 
will not contribute anyway to the energy integrals in $3.2. Using the dominant balance 
inherent in the kinematic equations (A 3) and (A4) the above results are summarized 
to give (3.5)-(3.9). 

Appendix B. Numerical solution of the ray equations 
Following Pedersen (1988) we use the notations 6, and nq for the divided midpoint 

difference and average with respect to the variable q.  These operators involve 
two neighbouring points and give discrete approximations to the first-order partial 
derivative and the function itself, respectively. The grid site of a quantity is denoted 
by a subscript for the spatial location and a superscript for the time. We further 
collect terms within square brackets, while leaving common indices outside. 

Both the kinematic equation, (3.21), and the energy equation, (3.20), are written in a 
conservative form and display a mixed hyperbolic/parabolic nature. Using e = (A(")); 
as a new dependent variable we may write 

for the energy and kinematic equations respectively. The symbol D denotes the energy 
sink, while B and G are transport terms. Thus, apart from some of the nonlinearities 
and the interpretations of the unknowns, the set is of a standard type described in 
an array of textbooks. Consequently, there should be need for no more than a brief 
documentation on the numerical method. 

Contrary to the most standard textbook procedures we apply a staggered grid both 
in time and space and choose and 0(?, as unknowns. The difference equations 

J+ 3 

read 

[6,e = -6,B - D]:', [6,8 = -6,G](.n+f) J+$ ' (B 21, (B 3) 

where the fluxes are represented according to 

The meaning of the tilde depends on whether we use an up-wind scheme or not. If 
a symmetric scheme is used, the tilde simply denotes the midpoint average as defined 
in the introduction to this Appendix. On the other hand, when we use up-wind 
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differences in the advection terms, the tilde indicates the nearest upstream value 
(P. I = e j  if B,++ > 0 etc.). Upstream representations have to be used whenever 
the diffusion-like terms on the right-hand sides of (3.20) and (3.21) become very 
small. However, most of simulations described herein are performed with symmetric 
differences. The energy sink term is discretized according to 

JfI 

At each time level the equations (B2) and (B2) give implicit equations for new 
e- and &values respectively. The former is nonlinear and is solved by an iteration 
technique. 
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